Cómo calcular los promedios móviles en Excel Excel Data Analysis For Dummies, 2nd Edition El comando Data Analysis proporciona una herramienta para calcular los promedios móviles y exponencialmente suavizados en Excel. Supongamos, por razones ilustrativas, que usted ha recopilado información diaria sobre la temperatura. Desea calcular el promedio móvil de tres días 8212 el promedio de los últimos tres días 8212 como parte de algún pronóstico meteorológico simple. Para calcular las medias móviles para este conjunto de datos, siga estos pasos. Para calcular una media móvil, primero haga clic en el botón de comando Data Analysis (Análisis de datos) tab8217s. Cuando Excel muestra el cuadro de diálogo Análisis de datos, seleccione el elemento Promedio móvil de la lista y, a continuación, haga clic en Aceptar. Excel muestra el cuadro de diálogo Promedio móvil. Identifique los datos que desea utilizar para calcular el promedio móvil. Haga clic en el cuadro de texto Intervalo de entrada del cuadro de diálogo Promedio móvil. A continuación, identifique el intervalo de entrada, ya sea escribiendo una dirección de rango de hoja de cálculo o utilizando el mouse para seleccionar el rango de hoja de cálculo. Su referencia de rango debe usar direcciones de celdas absolutas. Una dirección de celda absoluta precede la letra de la columna y el número de fila con signos, como en A1: A10. Si la primera celda de su rango de entrada incluye una etiqueta de texto para identificar o describir sus datos, active la casilla de verificación Etiquetas en primera fila. En el cuadro de texto Intervalo, indique a Excel cuántos valores deben incluirse en el cálculo del promedio móvil. Puede calcular un promedio móvil usando cualquier número de valores. De forma predeterminada, Excel utiliza los tres valores más recientes para calcular el promedio móvil. Para especificar que se utilice otro número de valores para calcular el promedio móvil, ingrese ese valor en el cuadro de texto Intervalo. Dígale a Excel dónde colocar los datos del promedio móvil. Utilice el cuadro de texto Rango de salida para identificar el intervalo de hoja de cálculo en el que desea colocar los datos del promedio móvil. En el ejemplo de la hoja de cálculo, los datos del promedio móvil se han colocado en el rango B2 de la hoja de cálculo: B10. (Opcional) Especifique si desea un gráfico. Si desea un gráfico que trace la información del promedio móvil, seleccione la casilla de verificación Salida del gráfico. (Opcional) Indique si desea calcular la información de error estándar. Si desea calcular errores estándar para los datos, seleccione la casilla de verificación Estándar Errores. Excel coloca valores de error estándar junto a los valores de media móvil. (La información de error estándar pasa a C2: C10.) Una vez que haya terminado de especificar qué información de promedio móvil desea calcular y dónde desea colocarla, haga clic en Aceptar. Excel calcula la información del promedio móvil. Nota: Si Excel doesn8217t tiene suficiente información para calcular un promedio móvil para un error estándar, coloca el mensaje de error en la celda. Puede ver varias celdas que muestran este mensaje de error como un valor. Datos suaves elimina la variación aleatoria y muestra las tendencias y los componentes cíclicos Inherente a la recopilación de datos tomados en el tiempo es una forma de variación aleatoria. Existen métodos para reducir la cancelación del efecto debido a la variación aleatoria. Una técnica frecuentemente utilizada en la industria es suavizar. Esta técnica, cuando se aplica correctamente, revela más claramente la tendencia subyacente, los componentes estacionales y cíclicos. Existen dos grupos distintos de métodos de suavizado Métodos de promedio Métodos exponenciales de suavizado Tomar promedios es la forma más sencilla de suavizar los datos Primero investigaremos algunos métodos promediadores, como el promedio simple de todos los datos anteriores. Un gerente de un almacén quiere saber cuánto un proveedor típico ofrece en unidades de 1000 dólares. Se toma una muestra de 12 proveedores, al azar, obteniendo los siguientes resultados: La media o promedio calculado de los datos 10. El gestor decide usar esto como la estimación para el gasto de un proveedor típico. ¿Es esto una buena o mala estimación? El error cuadrático medio es una forma de juzgar qué tan bueno es un modelo Vamos a calcular el error cuadrático medio. La cantidad verdadera del error gastada menos la cantidad estimada. El error al cuadrado es el error anterior, al cuadrado. El SSE es la suma de los errores al cuadrado. El MSE es la media de los errores al cuadrado. Resultados de MSE por ejemplo Los resultados son: Errores y errores cuadrados La estimación 10 La pregunta surge: ¿podemos usar la media para pronosticar ingresos si sospechamos una tendencia? Un vistazo a la gráfica abajo muestra claramente que no debemos hacer esto. El promedio pesa todas las observaciones pasadas igualmente En resumen, declaramos que El promedio simple o la media de todas las observaciones pasadas es sólo una estimación útil para pronosticar cuando no hay tendencias. Si hay tendencias, utilice estimaciones diferentes que tengan en cuenta la tendencia. El promedio pesa todas las observaciones pasadas igualmente. Por ejemplo, el promedio de los valores 3, 4, 5 es 4. Sabemos, por supuesto, que un promedio se calcula sumando todos los valores y dividiendo la suma por el número de valores. Otra forma de calcular el promedio es añadiendo cada valor dividido por el número de valores, o 3/3 4/3 5/3 1 1.3333 1.6667 4. El multiplicador 1/3 se llama el peso. En general: barra frac fracción izquierda (frac derecha) x1 izquierda (frac derecha) x2,. ,, Izquierda (frac derecha) xn. 1.8.4 Modelos de media móvil En lugar de utilizar valores pasados de la variable de pronóstico en una regresión, un modelo de media móvil utiliza errores de predicción pasados en un modelo de regresión - Como el modelo. Y c e teta teta e dots theta e, donde et es ruido blanco. Nos referimos a esto como un modelo MA (q). Por supuesto, no observamos los valores de et, por lo que no es realmente regresión en el sentido usual. Observe que cada valor de yt puede considerarse como una media móvil ponderada de los últimos errores de pronóstico. Sin embargo, los modelos de media móvil no deben confundirse con el suavizado promedio móvil que discutimos en el Capítulo 6. Un modelo de media móvil se utiliza para pronosticar valores futuros mientras que el suavizado medio móvil se utiliza para estimar el ciclo de tendencias de valores pasados. Figura 8.6: Dos ejemplos de datos de modelos de media móvil con diferentes parámetros. A la izquierda: MA (1) con y t 20e t 0.8e t-1. Derecha: MA (2) con y t e t - e t-1 0.8e t-2. En ambos casos, e t es el ruido blanco normalmente distribuido con media cero y varianza uno. La Figura 8.6 muestra algunos datos de un modelo MA (1) y un modelo MA (2). Al cambiar los parámetros theta1, dots, thetaq, se obtienen diferentes patrones de series temporales. Al igual que con los modelos autorregresivos, la varianza del término de error y sólo cambiará la escala de la serie, no los patrones. Es posible escribir cualquier modelo estacionario AR (p) como un modelo MA (infty). Por ejemplo, usando la sustitución repetida, podemos demostrar esto para un modelo de AR (1): begin yt amp phi1y et amp phi1 (phi1y e) ph php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php 1, el valor de phi1k se hará más pequeño a medida que k sea mayor. Así que finalmente obtenemos yt et phi1 e phi12 e phi13 e cdots, un proceso MA (infty). El resultado inverso se cumple si imponemos algunas limitaciones a los parámetros de MA. Entonces el modelo MA se llama inversible. Es decir, que podemos escribir cualquier proceso de MA (q) invertible como un proceso de AR (infty). Los modelos invertibles no son simplemente para permitirnos convertir de los modelos de MA a los modelos de AR. También tienen algunas propiedades matemáticas que los hacen más fáciles de usar en la práctica. Las restricciones de invertibilidad son similares a las restricciones de estacionariedad. Para un modelo MA (1): -1lttheta1lt1. Para un modelo MA (2): -1lttheta2lt1, theta2theta1 gt-1, theta1-theta2 lt 1. Condiciones más complicadas se mantienen para qge3. Una vez más, R se encargará de estas limitaciones al estimar los modelos.
No comments:
Post a Comment