Media móvil Este ejemplo le enseña cómo calcular el promedio móvil de una serie de tiempo en Excel. Una gran ventaja se utiliza para suavizar las irregularidades (picos y valles) para reconocer fácilmente las tendencias. 1. En primer lugar, echemos un vistazo a nuestra serie de tiempo. 2. En la ficha Datos, haga clic en Análisis de datos. Nota: no puede encontrar el botón Análisis de datos Haga clic aquí para cargar el complemento Herramientas de análisis. 3. Seleccione Media móvil y haga clic en Aceptar. 4. Haga clic en el cuadro Rango de entrada y seleccione el rango B2: M2. 5. Haga clic en el cuadro Interval y escriba 6. 6. Haga clic en el cuadro Rango de salida y seleccione la celda B3. 8. Trazar un gráfico de estos valores. Explicación: dado que establecemos el intervalo en 6, el promedio móvil es el promedio de los 5 puntos de datos anteriores y el punto de datos actual. Como resultado, los picos y valles se suavizan. El gráfico muestra una tendencia creciente. Excel no puede calcular el promedio móvil para los primeros 5 puntos de datos porque no hay suficientes puntos de datos anteriores. 9. Repita los pasos 2 a 8 para el intervalo 2 y el intervalo 4. Conclusión: Cuanto mayor sea el intervalo, más se suavizarán los picos y los valles. Cuanto más pequeño es el intervalo, más cerca están las medias móviles de los puntos de datos reales. ¿Te gusta este sitio web gratis? Comparte esta página en GoogleMoving Promedios - Simple y exponencial Media móvil - Simple y exponencial Introducción Medias móviles suavizar los datos de precios para formar un indicador de tendencia siguiente. No predicen la dirección del precio, sino que definen la dirección actual con un retraso. Los promedios móviles se retrasan porque están basados en precios pasados. A pesar de este retraso, las medias móviles ayudan a suavizar la acción de los precios y filtran el ruido. También forman los bloques de construcción de muchos otros indicadores técnicos y superposiciones, como Bollinger Bands. MACD y el oscilador de McClellan. Los dos tipos más populares de promedios móviles son el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA). Estos promedios móviles pueden usarse para identificar la dirección de la tendencia o definir niveles potenciales de soporte y resistencia. Aquí hay un gráfico con un SMA y un EMA en él: Cálculo del promedio móvil simple Un promedio móvil simple se forma computando el precio medio de un título sobre un número específico de períodos. La mayoría de las medias móviles se basan en los precios de cierre. Una media móvil simple de 5 días es la suma de cinco días de los precios de cierre dividida por cinco. Como su nombre lo indica, un promedio móvil es un promedio que se mueve. Los datos antiguos se eliminan a medida que vienen disponibles nuevos datos. Esto hace que el promedio se mueva a lo largo de la escala de tiempo. A continuación se muestra un ejemplo de un promedio móvil de 5 días que evoluciona en tres días. El primer día de la media móvil simplemente cubre los últimos cinco días. El segundo día de la media móvil desciende el primer punto de datos (11) y añade el nuevo punto de datos (16). El tercer día de la media móvil continúa cayendo el primer punto de datos (12) y añadiendo el nuevo punto de datos (17). En el ejemplo anterior, los precios aumentan gradualmente de 11 a 17 en un total de siete días. Observe que la media móvil también aumenta de 13 a 15 durante un período de cálculo de tres días. También observe que cada valor promedio móvil es justo debajo del último precio. Por ejemplo, el promedio móvil para el primer día es igual a 13 y el último precio es 15. Los precios de los cuatro días anteriores fueron más bajos y esto hace que el promedio móvil se retrasa. Cálculo del promedio móvil exponencial Los promedios móviles exponenciales reducen el retraso aplicando más peso a los precios recientes. La ponderación aplicada al precio más reciente depende del número de periodos de la media móvil. Hay tres pasos para calcular una media móvil exponencial. En primer lugar, calcular el promedio móvil simple. Un promedio móvil exponencial (EMA) tiene que comenzar en alguna parte así que una media móvil simple se utiliza como EMA anterior del período anterior en el primer cálculo. Segundo, calcule el multiplicador de ponderación. En tercer lugar, calcular la media móvil exponencial. La siguiente fórmula es para un EMA de 10 días. Una media móvil exponencial de 10 períodos aplica una ponderación de 18.18 al precio más reciente. Un EMA de 10 periodos también puede ser llamado un EMA 18.18. Una EMA de 20 periodos aplica una ponderación de 9.52 al precio más reciente (2 / (201) .0952). Observe que la ponderación para el período de tiempo más corto es más que la ponderación para el período de tiempo más largo. De hecho, la ponderación disminuye a la mitad cada vez que el período de media móvil se duplica. Si desea un porcentaje específico para un EMA, puede usar esta fórmula para convertirlo en períodos de tiempo y luego ingresar ese valor como el parámetro EMA039s: A continuación se muestra un ejemplo de hoja de cálculo de una media móvil simple de 10 días y un valor de 10- Promedio móvil exponencial para Intel. Los promedios móviles simples son directos y requieren poca explicación. El promedio de 10 días se mueve simplemente mientras que nuevos precios están disponibles y los viejos precios caen apagado. El promedio móvil exponencial comienza con el valor de la media móvil simple (22,22) en el primer cálculo. Después del primer cálculo, la fórmula normal se hace cargo. Debido a que un EMA comienza con un promedio móvil simple, su verdadero valor no se realizará hasta 20 o más períodos más tarde. En otras palabras, el valor de la hoja de cálculo Excel puede diferir del valor del gráfico debido al corto período de revisión. Esta hoja de cálculo sólo se remonta a 30 períodos, lo que significa que el efecto de la media móvil simple ha tenido 20 períodos para disipar. StockCharts se remonta al menos 250 períodos (por lo general mucho más) para sus cálculos de modo que los efectos de la media móvil simple en el primer cálculo se han disipado completamente. El factor de Lag Cuanto más largo es el promedio móvil, más el retraso. Una media móvil exponencial de 10 días abrazará los precios de cerca y se convertirá poco después de que los precios giren. Los promedios móviles cortos son como los veleros, ágiles y rápidos de cambiar. Por el contrario, una media móvil de 100 días contiene muchos datos pasados que lo ralentizan. Los promedios móviles más largos son como los petroleros oceánicos - letárgicos y lentos para cambiar. Se necesita un movimiento de precios más grande y más largo para una media móvil de 100 días para cambiar el rumbo. La tabla de arriba muestra el SampP 500 ETF con una EMA de 10 días siguiendo de cerca los precios y una molienda SMA de 100 días más alta. Incluso con la disminución de enero-febrero, la SMA de 100 días mantuvo el curso y no rechazó. La SMA de 50 días se sitúa entre los promedios móviles de 10 y 100 días cuando se trata del factor de retraso. Simples versus promedios móviles exponenciales Aunque hay claras diferencias entre promedios móviles simples y promedios móviles exponenciales, uno no es necesariamente mejor que el otro. Los promedios móviles exponenciales tienen menos retraso y, por lo tanto, son más sensibles a los precios recientes y las recientes variaciones de precios. Los promedios móviles exponenciales se convertirán antes de promedios móviles simples. Los promedios móviles simples, por otro lado, representan un verdadero promedio de precios para todo el período de tiempo. Como tales, los promedios móviles simples pueden ser más adecuados para identificar niveles de soporte o resistencia. La preferencia media móvil depende de los objetivos, el estilo analítico y el horizonte temporal. Los cartistas deben experimentar con ambos tipos de promedios móviles, así como diferentes plazos para encontrar el mejor ajuste. La siguiente tabla muestra IBM con la SMA de 50 días en rojo y la EMA de 50 días en verde. Ambos culminaron a finales de enero, pero la disminución en la EMA fue más nítida que la disminución de la SMA. La EMA apareció a mediados de febrero, pero la SMA continuó baja hasta finales de marzo. Tenga en cuenta que la SMA apareció más de un mes después de la EMA. Longitudes y plazos La longitud del promedio móvil depende de los objetivos analíticos. Promedios cortos móviles (5-20 períodos) son los más adecuados para las tendencias a corto plazo y el comercio. Los cartistas interesados en las tendencias a mediano plazo optarían por promedios móviles más largos que podrían extenderse de 20 a 60 períodos. Los inversores a largo plazo preferirán las medias móviles con 100 o más períodos. Algunas longitudes móviles son más populares que otras. El promedio móvil de 200 días es quizás el más popular. Debido a su longitud, esto es claramente una media móvil a largo plazo. A continuación, el promedio móvil de 50 días es muy popular para la tendencia a mediano plazo. Muchos cartistas utilizan los promedios móviles de 50 días y 200 días juntos. A corto plazo, una media móvil de 10 días fue muy popular en el pasado porque era fácil de calcular. Uno simplemente agregó los números y movió el punto decimal. Identificación de tendencias Las mismas señales pueden generarse utilizando promedios móviles simples o exponenciales. Como se mencionó anteriormente, la preferencia depende de cada individuo. Estos ejemplos a continuación utilizarán promedios móviles simples y exponenciales. El término media móvil se aplica tanto a promedios móviles simples como exponenciales. La dirección de la media móvil transmite información importante sobre los precios. Una media móvil en ascenso muestra que los precios están aumentando en general. Una media móvil decreciente indica que los precios, en promedio, están cayendo. El aumento de la media móvil a largo plazo refleja una tendencia alcista a largo plazo. Una caída del promedio móvil a largo plazo refleja una tendencia a la baja a largo plazo. El gráfico anterior muestra 3M (MMM) con una media móvil exponencial de 150 días. Este ejemplo muestra cuán bien funcionan las medias móviles cuando la tendencia es fuerte. La EMA de 150 días rechazó en noviembre de 2007 y otra vez en enero de 2008. Observe que tomó una declinación 15 para invertir la dirección de esta media móvil. Estos indicadores rezagados identifican reversiones de tendencias a medida que ocurren (en el mejor de los casos) o después de que ocurren (en el peor). MMM continuó más bajo en marzo de 2009 y luego subió 40-50. Observe que la EMA de 150 días no apareció hasta después de este aumento. Una vez que lo hizo, sin embargo, MMM continuó más alto en los próximos 12 meses. Los promedios móviles trabajan brillantemente en fuertes tendencias. Crossovers dobles Dos medias móviles se pueden usar juntas para generar señales de cruce. En Análisis Técnico de los Mercados Financieros. John Murphy llama a esto el método de crossover doble. Los crossovers dobles implican una media móvil relativamente corta y una media móvil relativamente larga. Como con todas las medias móviles, la longitud general de la media móvil define el marco de tiempo para el sistema. Un sistema que utilice un EMA de 5 días y un EMA de 35 días se consideraría a corto plazo. Un sistema que utilizara un SMA de 50 días y un SMA de 200 días se consideraría de mediano plazo, tal vez incluso a largo plazo. Un cruce alcista ocurre cuando el promedio móvil más corto cruza por encima del promedio móvil más largo. Esto también se conoce como una cruz de oro. Un crossover bajista ocurre cuando el promedio móvil más corto cruza debajo de la media móvil más larga. Esto se conoce como una cruz muerta. Los cruces de media móvil producen señales relativamente tardías. Después de todo, el sistema emplea dos indicadores retardados. Cuanto más largo sea el promedio móvil, mayor será el desfase en las señales. Estas señales funcionan muy bien cuando una buena tendencia se apodera. Sin embargo, un sistema de crossover de media móvil producirá muchos whipsaws en ausencia de una tendencia fuerte. También hay un método triple crossover que implica tres promedios móviles. De nuevo, se genera una señal cuando la media móvil más corta cruza las dos medias móviles más largas. Un simple sistema de crossover triple puede implicar promedios móviles de 5 días, 10 días y 20 días. La tabla anterior muestra Home Depot (HD) con una EMA de 10 días (línea punteada verde) y EMA de 50 días (línea roja). La línea negra es el cierre diario. El uso de un crossover promedio móvil habría dado lugar a tres whipsaws antes de coger un buen comercio. La EMA de 10 días se rompió por debajo de la EMA de 50 días a finales de octubre (1), pero esto no duró mucho ya que los 10 días retrocedieron a mediados de noviembre (2). Esta cruz duró más tiempo, pero el siguiente cruce bajista en enero (3) ocurrió cerca de finales de noviembre los niveles de precios, dando lugar a otro whipsaw. Esta cruz bajista no duró mucho ya que la EMA de 10 días retrocedió por encima de los 50 días unos días después (4). Después de tres malas señales, la cuarta señal prefiguró un movimiento fuerte mientras que la acción avanzó sobre 20. Hay dos takeaways aquí. Primero, los crossovers son propensos al whipsaw. Se puede aplicar un filtro de precio o tiempo para ayudar a prevenir las sierras. Los operadores pueden requerir que el crossover dure 3 días antes de actuar o requiera que la EMA de 10 días se mueva por encima / por debajo del EMA de 50 días por una cierta cantidad antes de actuar. En segundo lugar, MACD se puede utilizar para identificar y cuantificar estos crossovers. MACD (10, 50, 1) mostrará una línea que representa la diferencia entre las dos medias móviles exponenciales. MACD se vuelve positivo durante una cruz de oro y negativo durante una cruz muerta. El oscilador de precio porcentual (PPO) se puede utilizar de la misma manera para mostrar diferencias porcentuales. Tenga en cuenta que MACD y el PPO se basan en promedios móviles exponenciales y no coincidirá con los promedios móviles simples. Este gráfico muestra Oracle (ORCL) con EMA de 50 días, EMA de 200 días y MACD (50.200,1). Hubo cuatro crossovers de media móvil durante un período de 2 1/2 años. Los tres primeros resultaron en whipsaws o malos oficios. Una tendencia sostenida comenzó con el cuarto crossover como ORCL avanzó a mediados de los 20s. Una vez más, los crossovers medios móviles funcionan muy bien cuando la tendencia es fuerte, pero producen pérdidas en ausencia de una tendencia. Crossovers de precios Los promedios móviles también pueden usarse para generar señales con crossovers de precios simples. Una señal alcista se genera cuando los precios se mueven por encima de la media móvil. Se genera una señal bajista cuando los precios se mueven por debajo de la media móvil. Los crossovers de precios se pueden combinar para comerciar dentro de la tendencia más grande. La media móvil más larga establece el tono para la tendencia más grande y la media móvil más corta se utiliza para generar las señales. Uno buscaría cruces de precios alcistas sólo cuando los precios ya están por encima de la media móvil más larga. Esto estaría negociando en armonía con la tendencia más grande. Por ejemplo, si el precio está por encima de la media móvil de 200 días, los cartistas sólo se centrarán en las señales cuando el precio se mueve por encima de la media móvil de 50 días. Obviamente, un movimiento por debajo de la media móvil de 50 días sería precedente de tal señal, pero tales cruces bajistas serían ignorados porque la tendencia más grande ha subido. Una cruz bajista simplemente sugeriría un retroceso dentro de una mayor tendencia alcista. Un retroceso por encima de la media móvil de 50 días señalaría una subida de los precios y la continuación de la mayor tendencia alcista. El siguiente gráfico muestra Emerson Electric (EMR) con la EMA de 50 días y EMA de 200 días. La acción se movió por encima y se mantuvo por encima de la media móvil de 200 días en agosto. Hubo bajadas por debajo de los 50 días EMA a principios de noviembre y de nuevo a principios de febrero. Los precios se movieron rápidamente por encima de la EMA de 50 días para proporcionar señales alcistas (flechas verdes) en armonía con la mayor tendencia alcista. MACD (1,50,1) se muestra en la ventana del indicador para confirmar los cruces de precios por encima o por debajo de la EMA de 50 días. El EMA de 1 día es igual al precio de cierre. El MACD (1,50,1) es positivo cuando el cierre está por encima del EMA de 50 días y negativo cuando el cierre está por debajo del EMA de 50 días. Soporte y Resistencia Los promedios móviles también pueden actuar como soporte en una tendencia alcista y resistencia en una tendencia bajista. Una tendencia alcista a corto plazo podría encontrar apoyo cerca de la media móvil simple de 20 días, que también se utiliza en bandas de Bollinger. Una tendencia alcista a largo plazo podría encontrar apoyo cerca del promedio móvil de 200 días, que es el promedio móvil más popular a largo plazo. De hecho, el promedio móvil de 200 días puede ofrecer soporte o resistencia simplemente porque es tan ampliamente utilizado. Es casi como una profecía autocumplida. El gráfico de arriba muestra el NY Composite con el promedio móvil simple de 200 días desde mediados de 2004 hasta finales de 2008. Los 200 días de apoyo brindado numerosas veces durante el avance. Una vez que la tendencia se invirtió con una ruptura de apoyo superior doble, el promedio móvil de 200 días actuó como resistencia alrededor de 9500. No espere soporte exacto y niveles de resistencia de promedios móviles, especialmente medias móviles más largas. Los mercados son impulsados por la emoción, lo que los hace propensos a los rebasamientos. En lugar de los niveles exactos, las medias móviles se pueden utilizar para identificar las zonas de apoyo o resistencia. Conclusiones Las ventajas de utilizar promedios móviles deben sopesarse contra las desventajas. Los promedios móviles son tendencia que sigue, o rezagada, los indicadores que serán siempre un paso detrás. Esto no es necesariamente una cosa mala. Después de todo, la tendencia es su amigo y es mejor el comercio en la dirección de la tendencia. Medias móviles aseguran que un comerciante está en línea con la tendencia actual. A pesar de que la tendencia es su amigo, los valores pasan una gran cantidad de tiempo en rangos comerciales, lo que hace que los promedios móviles sean ineficaces. Una vez en una tendencia, los promedios móviles le mantendrá en, pero también dar señales tardías. Don039t esperan vender en la parte superior y comprar en la parte inferior utilizando promedios móviles. Al igual que con la mayoría de las herramientas de análisis técnico, las medias móviles no deben usarse por sí solas, sino en conjunto con otras herramientas complementarias. Los cartistas pueden usar promedios móviles para definir la tendencia general y luego usar RSI para definir los niveles de sobrecompra o sobreventa. Adición de promedios móviles a los gráficos de StockCharts Los promedios móviles están disponibles como una función de superposición de precios en el workbench de SharpCharts. Utilizando el menú desplegable Superposiciones, los usuarios pueden elegir un promedio móvil simple o un promedio móvil exponencial. El primer parámetro se utiliza para establecer el número de períodos de tiempo. Se puede agregar un parámetro opcional para especificar el campo de precio que se debe utilizar en los cálculos: O para el Abierto, H para el Alto, L para el Bajo y C para el Cierre. Una coma se utiliza para separar los parámetros. Se puede agregar otro parámetro opcional para cambiar las medias móviles a la izquierda (pasado) oa la derecha (futuro). Un número negativo (-10) cambiaría la media móvil a la izquierda 10 períodos. Un número positivo (10) cambiaría la media móvil a los 10 periodos correctos. Múltiples promedios móviles pueden superponerse a la gráfica de precios simplemente agregando otra línea de superposición al workbench. Los miembros de StockCharts pueden cambiar los colores y el estilo para diferenciar entre varios promedios móviles. Después de seleccionar un indicador, abra Opciones avanzadas haciendo clic en el pequeño triángulo verde. Las Opciones avanzadas también se pueden usar para agregar una superposición de promedio móvil a otros indicadores técnicos como RSI, CCI y Volumen. Haga clic aquí para un gráfico en vivo con varios promedios móviles diferentes. Usando los promedios móviles con las exploraciones de StockCharts Aquí hay algunas exploraciones de la muestra que los miembros de StockCharts pueden utilizar para explorar diversas situaciones del promedio móvil: Movimiento alcista de la media cruzada: Esta exploraciones busca las poblaciones con una media móvil simple de 150 días y una cruz alcista de los 5 EMA y EMA de 35 días. La media móvil de 150 días está subiendo, siempre y cuando se está negociando por encima de su nivel hace cinco días. Una cruz alcista ocurre cuando la EMA de 5 días se mueve por encima de la EMA de 35 días sobre un volumen por encima del promedio. Media bajista media móvil: Esta escanea busca acciones con una media móvil simple descendente de 150 días y una cruz bajista de la EMA de 5 días y de la EMA de 35 días. La media móvil de 150 días está cayendo, siempre y cuando se esté negociando por debajo de su nivel hace cinco días. Una cruz bajista ocurre cuando la EMA de 5 días se mueve por debajo de la EMA de 35 días sobre un volumen por encima del promedio. Estudio adicional El libro de John Murphy tiene un capítulo dedicado a los promedios móviles ya sus diversos usos. Murphy cubre los pros y los contras de los promedios móviles. Además, Murphy muestra cómo los promedios móviles trabajan con Bollinger Bands y los sistemas comerciales basados en canales. Análisis técnico de los mercados financieros John Murphy Si ve este mensaje, su navegador ha deshabilitado o no es compatible con JavaScript. Para utilizar todas las funciones de este sistema de ayuda, como la búsqueda, el navegador debe tener habilitado JavaScript. Promedios móviles ponderados con promedios móviles simples, cada valor de datos en la quotwindow en la que se realiza el cálculo tiene un significado o peso igual. A menudo es el caso, especialmente en el análisis de datos de precios financieros, que más datos cronológicamente recientes deberían tener un peso mayor. En estos casos, a menudo se prefiere la funcionalidad de Promedio móvil ponderado (o Promedio móvil exponencial, véase el tema siguiente). Considere la misma tabla de valores de datos de ventas durante doce meses: Para calcular una media móvil ponderada: Calcule cuántos intervalos de datos están participando en el cálculo del promedio móvil (es decir, el tamaño de la ventana de cálculo). Si se dice que la ventana de cálculo es n, entonces el valor de datos más reciente en la ventana se multiplica por n, el siguiente más reciente multiplicado por n-1, el valor anterior al multiplicado por n-2 y así sucesivamente para todos los valores en la ventana. Divida la suma de todos los valores multiplicados por la suma de los pesos para dar el Promedio móvil ponderado sobre esa ventana. Coloque el valor del Promedio Movido Ponderado en una nueva columna de acuerdo con la posición de promedio de arrastre descrita anteriormente. Para ilustrar estos pasos, considere si se requiere un promedio móvil ponderado de ventas de 3 meses en diciembre (usando la tabla anterior de valores de ventas). El término quot3-monthquot implica que el cálculo quotwindowquot es 3, por lo tanto el algoritmo de cálculo del Promedio Movido Ponderado para este caso debería ser: O, si un promedio móvil ponderado de 3 meses fue evaluado en todo el rango original de datos, los resultados serían : Promedio móvil ponderado de 3 meses Promedios de movimiento: ¿Cuáles son? Entre los indicadores técnicos más populares, las medias móviles se utilizan para medir la dirección de la tendencia actual. Cada tipo de media móvil (comúnmente escrito en este tutorial como MA) es un resultado matemático que se calcula promediando un número de puntos de datos pasados. Una vez determinado, el promedio resultante se traza en un gráfico para permitir a los operadores ver los datos suavizados en lugar de centrarse en las fluctuaciones de precios cotidianas que son inherentes a todos los mercados financieros. La forma más simple de una media móvil, apropiadamente conocida como media móvil simple (SMA), se calcula tomando la media aritmética de un conjunto dado de valores. Por ejemplo, para calcular una media móvil básica de 10 días, sumaría los precios de cierre de los últimos 10 días y luego dividiría el resultado por 10. En la Figura 1, la suma de los precios de los últimos 10 días (110) es Dividido por el número de días (10) para llegar al promedio de 10 días. Si un comerciante desea ver un promedio de 50 días en lugar, el mismo tipo de cálculo se haría, pero incluiría los precios en los últimos 50 días. El promedio resultante a continuación (11) tiene en cuenta los últimos 10 puntos de datos con el fin de dar a los comerciantes una idea de cómo un activo tiene un precio en relación con los últimos 10 días. Quizás usted se está preguntando porqué los comerciantes técnicos llaman a esta herramienta una media móvil y no apenas una media regular. La respuesta es que cuando los nuevos valores estén disponibles, los puntos de datos más antiguos deben ser eliminados del conjunto y los nuevos puntos de datos deben entrar para reemplazarlos. Por lo tanto, el conjunto de datos se mueve constantemente para tener en cuenta los nuevos datos a medida que estén disponibles. Este método de cálculo garantiza que sólo se contabilice la información actual. En la figura 2, una vez que se agrega el nuevo valor de 5 al conjunto, el cuadro rojo (que representa los últimos 10 puntos de datos) se desplaza a la derecha y el último valor de 15 se deja caer del cálculo. Debido a que el valor relativamente pequeño de 5 reemplaza el valor alto de 15, se esperaría ver el promedio de la disminución de conjunto de datos, lo que hace, en este caso de 11 a 10. ¿Cómo se ven los valores promedio móviles Una vez que los valores de la MA se han calculado, se representan en un gráfico y luego se conectan para crear una línea de media móvil. Estas líneas curvas son comunes en las cartas de los comerciantes técnicos, pero la forma en que se utilizan puede variar drásticamente (más sobre esto más adelante). Como se puede ver en la Figura 3, es posible agregar más de una media móvil a cualquier gráfico ajustando el número de períodos de tiempo utilizados en el cálculo. Estas líneas curvas pueden parecer distracción o confusión al principio, pero youll acostumbrarse a ellos a medida que pasa el tiempo. La línea roja es simplemente el precio medio en los últimos 50 días, mientras que la línea azul es el precio promedio en los últimos 100 días. Ahora que usted entiende lo que es un promedio móvil y lo que parece, bien introducir un tipo diferente de media móvil y examinar cómo se diferencia de la mencionada media móvil simple. La media móvil simple es muy popular entre los comerciantes, pero como todos los indicadores técnicos, tiene sus críticos. Muchas personas argumentan que la utilidad de la SMA es limitada porque cada punto en la serie de datos se pondera de la misma, independientemente de dónde se produce en la secuencia. Los críticos sostienen que los datos más recientes son más significativos que los datos anteriores y deberían tener una mayor influencia en el resultado final. En respuesta a esta crítica, los comerciantes comenzaron a dar más peso a los datos recientes, que desde entonces ha llevado a la invención de varios tipos de nuevos promedios, el más popular de los cuales es el promedio móvil exponencial (EMA). Promedio móvil exponencial El promedio móvil exponencial es un tipo de media móvil que da más peso a los precios recientes en un intento de hacerla más receptiva A nueva información. Aprender la ecuación algo complicada para calcular un EMA puede ser innecesario para muchos comerciantes, ya que casi todos los paquetes de gráficos hacen los cálculos para usted. Sin embargo, para los geeks de matemáticas que hay, aquí es la ecuación EMA: Cuando se utiliza la fórmula para calcular el primer punto de la EMA, puede observar que no hay ningún valor disponible para utilizar como la EMA anterior. Este pequeño problema se puede resolver iniciando el cálculo con una media móvil simple y continuando con la fórmula anterior desde allí. Le hemos proporcionado una hoja de cálculo de ejemplo que incluye ejemplos reales de cómo calcular una media móvil simple y una media móvil exponencial. La diferencia entre la EMA y la SMA Ahora que tiene una mejor comprensión de cómo se calculan la SMA y la EMA, echemos un vistazo a cómo estos promedios difieren. Al mirar el cálculo de la EMA, notará que se hace más hincapié en los puntos de datos recientes, lo que lo convierte en un tipo de promedio ponderado. En la Figura 5, el número de periodos de tiempo utilizados en cada promedio es idéntico (15), pero la EMA responde más rápidamente a los precios cambiantes. Observe cómo el EMA tiene un valor más alto cuando el precio está subiendo, y cae más rápidamente que el SMA cuando el precio está disminuyendo. Esta capacidad de respuesta es la razón principal por la que muchos comerciantes prefieren utilizar la EMA sobre la SMA. ¿Qué significan los diferentes días? Las medias móviles son un indicador totalmente personalizable, lo que significa que el usuario puede elegir libremente el tiempo que desee al crear el promedio. Los períodos de tiempo más comunes utilizados en las medias móviles son 15, 20, 30, 50, 100 y 200 días. Cuanto más corto sea el lapso de tiempo utilizado para crear el promedio, más sensible será a los cambios de precios. Cuanto más largo sea el lapso de tiempo, menos sensible o más suavizado será el promedio. No hay un marco de tiempo adecuado para usar al configurar sus promedios móviles. La mejor manera de averiguar cuál funciona mejor para usted es experimentar con una serie de diferentes períodos de tiempo hasta encontrar uno que se adapte a su estrategia. Medios móviles: cómo utilizarlos Suscribirse a las noticias para usar para obtener las últimas novedades y análisis Gracias por inscribirse en Investopedia Insights - Novedades para usar. A Ejemplos de cálculo de pronósticos A.1 Métodos de cálculo de pronóstico Hay disponibles doce métodos de cálculo de pronósticos. La mayoría de estos métodos proporcionan un control limitado del usuario. Por ejemplo, se puede especificar el peso de los datos históricos recientes o el intervalo de fechas de los datos históricos utilizados en los cálculos. Los siguientes ejemplos muestran el procedimiento de cálculo para cada uno de los métodos de pronóstico disponibles, dados un conjunto idéntico de datos históricos. Los siguientes ejemplos utilizan los mismos datos de ventas de 2004 y 2005 para producir un pronóstico de ventas de 2006. Además del cálculo de pronóstico, cada ejemplo incluye una predicción simulada de 2005 para un período de retención de tres meses (opción de procesamiento 19 3), que se utiliza para el porcentaje de precisión y cálculos de desviación absoluta media (ventas reales comparadas con predicciones simuladas). A.2 Criterios de evaluación del rendimiento de la previsión Dependiendo de su selección de las opciones de procesamiento y de las tendencias y patrones existentes en los datos de ventas, algunos métodos de pronóstico obtendrán mejores resultados que otros para un conjunto de datos históricos dado. Un método de pronóstico apropiado para un producto puede no ser apropiado para otro producto. También es improbable que un método de predicción que proporcione buenos resultados en una etapa del ciclo de vida de un producto siga siendo apropiado durante todo el ciclo de vida. Puede elegir entre dos métodos para evaluar el rendimiento actual de los métodos de pronóstico. Estas son la desviación absoluta media (MAD) y el porcentaje de precisión (POA). Ambos métodos de evaluación de rendimiento requieren datos históricos de ventas para un período de tiempo especificado por el usuario. Este período de tiempo se denomina período de retención o período de mejor ajuste (PBF). Los datos de este período se utilizan como base para recomendar cuál de los métodos de pronóstico se utilizará para realizar la siguiente proyección de pronóstico. Esta recomendación es específica para cada producto y puede cambiar de una generación de pronóstico a otra. Los dos métodos de evaluación del desempeño de los pronósticos se demuestran en las páginas que siguen los ejemplos de los doce métodos de pronóstico. A.3 Método 1 - Porcentaje especificado durante el año pasado Este método multiplica los datos de ventas del año anterior por un factor especificado por el usuario, por ejemplo, 1,10 para un aumento de 10 o 0,97 para una disminución de 3. Historial de ventas requerido: Un año para calcular el pronóstico más el número especificado por el usuario de períodos de tiempo para evaluar el desempeño del pronóstico (opción de procesamiento 19). A.4.1 Cálculo de pronósticos Rango del historial de ventas que se utilizará en el cálculo del factor de crecimiento (opción de procesamiento 2a) 3 en este ejemplo. Sumar los últimos tres meses de 2005: 114 119 137 370 Sumar los mismos tres meses del año anterior: 123 139 133 395 El factor calculado 370/395 0,9367 Calcular las previsiones: Ventas de enero de 2005 128 0,9367 119,8036 o aproximadamente el 120 de febrero de 2005 Ventas 117 0,9367 109,5939 o alrededor de las ventas del 110 de marzo de 2005 115 0,9367 107,7205 o alrededor de 108 A.4.2 Cálculo de previsiones simuladas Sumar los tres meses de 2005 antes del período de retención (julio, agosto y septiembre): 129 140 131 400 Sumar los mismos tres meses Para el año anterior: 141 128 118 387 El factor calculado 400/387 1.033591731 Calcula el pronóstico simulado: Octubre, 2004 ventas 123 1.033591731 127.13178 Ventas de noviembre de 2004 139 1.033591731 143.66925 Ventas de diciembre de 2004 133 1.033591731 137.4677 A.4.3 Porcentaje de Precisión Cálculo POA (127.13178 143.66925 137.4677) / (114 119 137) 100 408.26873 / 370 100 110.3429 A.4.4 Cálculo de Desviación Absoluta Media MAD (127.13178 - 114 143.66925 - 119 137.4677 - 137) / 3 (13.13178 24.66925 0.4677) / 3 12.75624 A.5 Método 3 - El año pasado a este año Este método copia los datos de ventas del año anterior al año siguiente. Historial de ventas requerido: Un año para calcular el pronóstico más el número de periodos de tiempo especificados para evaluar el desempeño del pronóstico (opción de procesamiento 19). A.6.1 Cálculo del pronóstico Número de periodos que se incluirán en el promedio (opción de procesamiento 4a) 3 en este ejemplo Para cada mes del pronóstico, promedio de los datos de los tres meses anteriores. Previsiones de enero: 114 119 137 370, 370/3 123.333 o 123 Previsiones de febrero: 119 137 123 379, 379/3 126.333 o 126 Previsiones de marzo: 137 123 126 379, 386/3 128.667 o 129 A.6.2 Cálculo de pronóstico simulado Octubre 2005 Ventas (129 140 131) / 3 133,3333 Ventas de noviembre de 2005 (140 131 114) / 3 128,3333 Ventas de diciembre de 2005 (131 114 119) / 3 121,3333 A.6.3 Porcentaje de cálculo de la exactitud POA (133.3333 128.3333 121.3333) / (114 119 137) 100 103.513 A.6.4 Cálculo de la desviación absoluta media MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) / 3 14.7777 A.7 Método 5 - Aproximación lineal La aproximación lineal calcula una tendencia basada en dos puntos de datos del historial de ventas. Estos dos puntos definen una línea de tendencia recta que se proyecta hacia el futuro. Utilice este método con precaución, ya que los pronósticos a largo plazo son aprovechados por pequeños cambios en sólo dos puntos de datos. Historial de ventas requerido: El número de períodos a incluir en la regresión (opción de procesamiento 5a), más 1 más el número de períodos de tiempo para evaluar el rendimiento de la previsión (opción de procesamiento 19). A.8.1 Cálculo de pronóstico Número de períodos a incluir en la regresión (opción de procesamiento 6a) 3 en este ejemplo Para cada mes del pronóstico, agregue el aumento o disminución durante los períodos especificados antes del período de retención del período anterior. Promedio de los tres meses anteriores (114 119 137) / 3 123.3333 Resumen de los tres meses anteriores con peso considerado (114 1) (119 2) (137 3) 763 Diferencia entre los valores 763 - 123.3333 (1 2 3) 23 Relación (12 22 32) - 2 3 14 - 12 2 Valor1 Diferencia / Relación 23/2 11,5 Valor2 Relación medio-valor1 123,3333 - 11,5 2 100,333 Pronóstico (1 n) valor1 valor2 4 11,5 100,333 146,333 o 146 Pronóstico 5 11,5 100,3333 157,8333 o 158 Previsiones 6 11,5 100,3333 169,3333 o 169 A.8.2 Cálculo de pronósticos simulados Ventas de octubre de 2004: Promedio de los tres meses anteriores (129 140 131) / 3 133,3333 Resumen de los tres meses anteriores con ponderación considerada (129 1) (140 2) (131 3) 802 Diferencia entre los valores 802 - 133.3333 (1 2 3) 2 Relación (12 22 32) - 2 3 14 - 12 2 Valor1 Diferencia / Relación 2/2 1 Valor2 Promedio - valor1 ratio 133.3333 - 1 2 131.3333 Pronóstico (1 N) valor1 valor2 4 1 131,3333 135,3333 Ventas de noviembre de 2004 Promedio de los tres meses anteriores (140 131 114) / 3 128,333 Resumen de los tres meses anteriores con ponderación considerada (140 1) (131 2) (114 3) 744 Diferencia entre el Valores 744 - 128.3333 (1 2 3) -25.9999 Valor1 Diferencia / Ratio -25.9999 / 2 -12.9999 Valor2 Relación medio-valor1 128.3333 - (-12.9999) 2 154.3333 Previsión 4 -12.9999 154.3333 102.3333 Diciembre 2004 Ventas Promedio de los tres meses anteriores ( 131 114 119) / 3 121.3333 Resumen de los tres meses anteriores con el peso considerado (131 1) (114 2) (119 3) 716 Diferencia entre los valores 716 - 121.3333 (1 2 3) -11.9999 Valor1 Diferencia / Ratio -11.9999 / 2 -5,9999 Valor2 Relación medio-valor1 121,3333 - (-5,9999) 2 133,333 Previsión 4 (-5,9999) 133,3333 109,3333 A.8.3 Porcentaje de precisión Cálculo POA (135,33 102,33 109,33) / (114 119 137) 100 93,78 A.8,4 Media absoluta Métodos 7 - Aproximación de Segundo Grado La Regresión Lineal determina los valores para ayb en la fórmula de pronóstico Y a bX con el objetivo de ajustar una línea recta a Los datos del historial de ventas. La Aproximación de Segundo Grado es similar. Sin embargo, este método determina los valores de a, byc en la fórmula de pronóstico Y a bX cX2 con el objetivo de ajustar una curva a los datos del historial de ventas. Este método puede ser útil cuando un producto está en la transición entre etapas de un ciclo de vida. Por ejemplo, cuando un nuevo producto pasa de la introducción a las fases de crecimiento, la tendencia de las ventas puede acelerarse. Debido al término de segundo orden, el pronóstico puede acercarse rápidamente al infinito o caer a cero (dependiendo de si el coeficiente c es positivo o negativo). Por lo tanto, este método es útil sólo en el corto plazo. Especificaciones de pronóstico: Las fórmulas encuentran a, b yc para ajustar una curva a exactamente tres puntos. Se especifica n en la opción de procesamiento 7a, el número de periodos de tiempo de datos que se acumulan en cada uno de los tres puntos. En este ejemplo n 3. Por lo tanto, los datos de ventas reales de abril a junio se combinan en el primer punto, Q1. Julio a septiembre se suman para crear Q2, y octubre a diciembre suma a Q3. La curva se ajustará a los tres valores Q1, Q2 y Q3. Historial de ventas requerido: 3 n períodos para calcular la previsión más el número de periodos de tiempo requeridos para evaluar el desempeño de pronóstico (PBF). Número de períodos a incluir (opción de procesamiento 7a) 3 en este ejemplo Utilice los meses previos (3 n) en bloques trimestrales: Q1 (abril - junio) 125 122 137 384 Q2 (julio - septiembre) 129 140 131 400 Q3 El siguiente paso consiste en calcular los tres coeficientes a, b yc que se utilizarán en la fórmula de pronóstico Y a bX cX2 (1) Q1 a bX cX2 (donde X1) abc (2) Q2 A b c c c x 2 (donde X 2) a 2b 4c (3) Q3 a bX cX2 (donde X 3) a 3b 9c Resuelve las tres ecuaciones simultáneamente para hallar b, a y c: Restar la ecuación (1) de la ecuación (2) Y resuelva para b (2) - (1) Q2 - Q1 b 3c Sustituya esta ecuación por b en la ecuación (3) (3) Q3 a 3 (Q2 - Q1) - 3cc Finalmente, sustitúyase estas ecuaciones para ayb en El método de Aproximación de Segundo Grado calcula a, b y c de la siguiente manera: a (a), (a), (a), (c) Q3 - 3 (Q2 - Q1) 370 - 3 (400 - 384) 322 c (Q3 - Q2) (Q1 - Q2) / 2 (370 - 400) (322 340 - 368) / 3 294/3 98 por período de abril a junio (-) - 3c (400 - 384) - (3 -23) 85 Y a bX cX2 322 85X (322 510 - 828) / 3 1,33 o 1 por período de octubre a diciembre (X7) (322 595 - 1127) / 3 -70 A.9.2 Cálculo de pronósticos simulados Octubre, noviembre y diciembre de 2004 Ventas: T1 (enero - marzo) 360 P2 (abril - junio) 384 P3 (julio - sep) 400 a 400 - 3 (384 - 360) 328 (400 - 384) (360 - 384) / 2 -4b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 16/3 136 A.9.3 Porcentaje de cálculo de precisión POA (136 136 136) / (114 119 137) 100 110,27 A.9.4 Cálculo de Desviación Absoluta Media MAD (136 - 114 136 - 119 136 - 137) / 3 13.33 A.10 Método 8 - Método Flexible Método Flexible (Porcentaje sobre n Meses Previo) Es similar al método 1, porcentaje sobre el año pasado. Ambos métodos multiplican los datos de ventas de un período de tiempo anterior por un factor especificado por el usuario, luego proyectan ese resultado en el futuro. En el método Porcentaje sobre el año pasado, la proyección se basa en datos del mismo período del año anterior. El método flexible agrega la capacidad de especificar un período de tiempo distinto del mismo período del año pasado para utilizarlo como base para los cálculos. Factor de multiplicación. Por ejemplo, especifique 1.15 en la opción de procesamiento 8b para aumentar los datos del historial de ventas anterior en 15. Período de base. Por ejemplo, n 3 hará que el primer pronóstico se base en los datos de ventas en octubre de 2005. Historial de ventas mínimo: El usuario especificó el número de periodos al período base, más el número de períodos necesarios para evaluar el desempeño del pronóstico ( PBF). A.10.4 Cálculo de desviación absoluta media MAD (148 - 114 161 - 119 151 - 137) / 3 30 A.11 Método 9 - Promedio móvil ponderado El método de media móvil ponderada (WMA) es similar al método 4, promedio móvil (MA) . Sin embargo, con la media móvil ponderada puede asignar pesos desiguales a los datos históricos. El método calcula un promedio ponderado del historial de ventas reciente para llegar a una proyección para el corto plazo. Los datos más recientes se asignan generalmente un peso mayor que los datos antiguos, por lo que esto hace que WMA responda mejor a los cambios en el nivel de ventas. Sin embargo, el sesgo de pronóstico y los errores sistemáticos todavía ocurren cuando el historial de ventas del producto muestra tendencias fuertes o patrones estacionales. Este método funciona mejor para las predicciones a corto plazo de productos maduros que para productos en las etapas de crecimiento o obsolescencia del ciclo de vida. N el número de períodos del historial de ventas para usar en el cálculo de pronóstico. Por ejemplo, especifique n 3 en la opción de procesamiento 9a para utilizar los tres períodos más recientes como base para la proyección en el siguiente período de tiempo. Un valor grande para n (como 12) requiere más historial de ventas. Esto resulta en un pronóstico estable, pero será lento para reconocer los cambios en el nivel de ventas. Por otro lado, un valor pequeño para n (como 3) responderá más rápidamente a los cambios en el nivel de ventas, pero el pronóstico puede fluctuar tan ampliamente que la producción no puede responder a las variaciones. El peso asignado a cada uno de los períodos de datos históricos. Los pesos asignados deben ser de 1,00. Por ejemplo, cuando n 3, asignar pesos de 0,6, 0,3 y 0,1, con los datos más recientes que reciben el mayor peso. Historial de ventas mínimo requerido: n más el número de periodos de tiempo requeridos para evaluar el desempeño del pronóstico (PBF). MAD (133,5 - 114 121,7 - 119 118,7 - 137) / 3 13,5 A.12 Método 10 - Suavizado lineal Este método es similar al Método 9, Promedio móvil ponderado (WMA). Sin embargo, en lugar de asignar arbitrariamente pesos a los datos históricos, se utiliza una fórmula para asignar pesos que disminuyen linealmente y sumen a 1,00. El método entonces calcula un promedio ponderado del historial de ventas reciente para llegar a una proyección para el corto plazo. Como ocurre con todas las técnicas de predicción de media móvil lineal, el sesgo de predicción y los errores sistemáticos ocurren cuando el historial de ventas del producto muestra tendencias fuertes o patrones estacionales. Este método funciona mejor para los pronósticos a corto plazo de productos maduros que para productos en las etapas de crecimiento o obsolescencia del ciclo de vida. N el número de períodos del historial de ventas para usar en el cálculo de pronóstico. Esto se especifica en la opción de procesamiento 10a. Por ejemplo, especifique n 3 en la opción de procesamiento 10b para utilizar los tres períodos más recientes como base para la proyección en el siguiente período de tiempo. El sistema asignará automáticamente los pesos a los datos históricos que disminuyen linealmente y sumen a 1,00. Por ejemplo, cuando n 3, el sistema asignará pesos de 0,5, 0,3333 y 0,1, con los datos más recientes recibiendo el mayor peso. Historial de ventas mínimo requerido: n más el número de periodos de tiempo requeridos para evaluar el desempeño del pronóstico (PBF). A.12.1 Cálculo del pronóstico Número de períodos a incluir en el promedio de suavizado (opción de procesamiento 10a) 3 en este ejemplo Razón para un período anterior 3 / (n2 n) / 2 3 / (32 3) / 2 3/6 0,5 Razón para dos Periodos previos 2 / (n2n) / 2 2 / (32 3) / 2 2/6 0,3333. Relación para tres períodos anteriores 1 / (n2n) / 2 1 / (32 3) / 2 1/6 0,1666. Previsiones de enero: 137 0,5 119 1/3 114 1/6 127,16 o 127 Previsiones de febrero: 127 0,5 137 1/3 119 1/6 129 Previsiones de marzo: 129 0,5 127 1/3 137 1/6 129,666 o 130 A.12.2 Simulación del cálculo de previsión Ventas de octubre de 2004 129 1/6 140 2/6 131 3/6 133,6666 Ventas de noviembre de 2004 140 1/6 131 2/6 114 3/6 124 Diciembre 2004 ventas 131 1/6 114 2/6 119 3/6 (133.6666 124 119.3333) / (114 119 137) 100 101.891 A.12.4 Cálculo de Desviación Absoluta Media MAD (133.6666 - 114 124 - 119 119.3333 - 137) / 3 14.1111 A.13 Método 11 - Suavizado Exponencial Este método es similar al Método 10, Suavizado Lineal. En el suavizado lineal el sistema asigna pesos a los datos históricos que disminuyen linealmente. En el suavizado exponencial, el sistema asigna pesos que decaen exponencialmente. La ecuación de predicción de suavizado exponencial es: Previsión a (Ventas reales anteriores) (1 - a) Previsión anterior La previsión es una media ponderada de las ventas reales del período anterior y la previsión del período anterior. A es el peso aplicado a las ventas reales del período anterior. (1 - a) es el peso aplicado a la previsión del período anterior. Valores válidos para un rango de 0 a 1, y generalmente caen entre 0,1 y 0,4. La suma de los pesos es 1,00. A (1 - a) 1 Debe asignar un valor para la constante de suavizado, a. Si no asigna valores para la constante de suavizado, el sistema calcula un valor supuesto basado en el número de períodos del historial de ventas especificado en la opción de procesamiento 11a. A la constante de suavizado utilizada en el cálculo del promedio suavizado para el nivel general o la magnitud de las ventas. Valores válidos para un rango de 0 a 1. n el rango de datos del historial de ventas para incluir en los cálculos. Generalmente, un año de datos de historial de ventas es suficiente para estimar el nivel general de ventas. Para este ejemplo, se escogió un pequeño valor para n (n 3) para reducir los cálculos manuales requeridos para verificar los resultados. El suavizado exponencial puede generar un pronóstico basado en tan poco como un punto de datos históricos. Historial de ventas mínimo requerido: n más el número de periodos de tiempo requeridos para evaluar el desempeño del pronóstico (PBF). A.13.1 Cálculo del pronóstico Número de períodos a incluir en el promedio de suavizado (opción de procesamiento 11a) 3 y factor alfa (opción de procesamiento 11b) en blanco en este ejemplo un factor para los datos de ventas más antiguos 2 / (11) o 1 cuando alfa es Se especificó un factor para los datos de ventas más antiguos 2 / (12), o alfa cuando se especifica alfa un factor para los 3 primeros datos de ventas 2 / (13) o alfa cuando se especifica alfa un factor para los datos de ventas más recientes 2 / (1n), o alfa cuando se especifica alfa Noviembre Sm. Promedio A (Octubre Real) (1 - a) Octubre Sm. Promedio 1 114 0 0 114 Diciembre Sm. Promedio A (Noviembre Actual) (1 - a) Noviembre Sm. Promedio 2/3 119 1/3 114 117.3333 Pronóstico de enero a (diciembre Actual) (1 - a) Diciembre Sm. Promedio 2/4 137 2/4 117.3333 127.16665 o 127 Febrero Pronóstico Enero Pronóstico 127 Marzo Pronóstico Enero Pronóstico 127 A.13.2 Simulated Forecast Calculation Julio, 2004 Sm. Promedio 2/2 129 129 Agosto Sm. Promedio 2/3 140 1/3 129 136.3333 Septiembre Sm. Promedio 2/4 131 2/4 136.3333 133.6666 Octubre, 2004 ventas Sep. Sm. Promedio 133.6666 Agosto, 2004 Sm. Promedio 2/2 140 140 Septiembre Sm. Promedio 2/3 131 1/3 140 134 Octubre Sm. Promedio 2/4 114 2/4 134 124 Noviembre, 2004 ventas Sep Sm. Promedio 124 de septiembre de 2004 Sm. Promedio 2/2 131 131 Octubre Sm. Promedio 2/3 114 1/3 131 119,6666 Noviembre Sm. Promedio 2/4 119 2/4 119.6666 119.3333 Diciembre 2004 ventas Sep Sm. Promedio 119.3333 A.13.3 Porcentaje de Precisión Cálculo POA (133.6666 124 119.3333) / (114 119 137) 100 101.891 A.13.4 Cálculo de Desviación Absoluta Media MAD (133.6666 - 114 124 - 119 119.3333 - 137) / 3 14.1111 A.14 Método 12 - Suavizado exponencial con tendencia y estacionalidad Este método es similar al método 11, Suavizado exponencial en el que se calcula un promedio suavizado. Sin embargo, el Método 12 también incluye un término en la ecuación de pronóstico para calcular una tendencia suavizada. El pronóstico se compone de un promedio suavizado ajustado para una tendencia lineal. Cuando se especifica en la opción de procesamiento, el pronóstico también se ajusta a la estacionalidad. A la constante de suavizado utilizada en el cálculo del promedio suavizado para el nivel general o la magnitud de las ventas. Los valores válidos para alfa varían de 0 a 1. b la constante de suavizado utilizada en el cálculo del promedio suavizado para el componente de tendencia de la previsión. Los valores válidos para el rango beta van de 0 a 1. Si un índice estacional se aplica al pronóstico ayb son independientes entre sí. No tienen que agregar 1.0. Historial de ventas mínimo requerido: dos años más el número de periodos de tiempo requeridos para evaluar el desempeño del pronóstico (PBF). El método 12 utiliza dos ecuaciones exponenciales de suavizado y un promedio simple para calcular un promedio suavizado, una tendencia suavizada y un factor estacional promedio simple. A.14.1 Cálculo de pronósticos A) Un promedio exponencialmente suavizado MAD (122.81 - 114 133.14 - 119 135.33 - 137) / 3 8.2 A.15 Evaluación de los pronósticos Puede seleccionar métodos de pronóstico para generar hasta doce pronósticos para cada producto. Cada método de pronóstico probablemente creará una proyección ligeramente diferente. Cuando se pronostican miles de productos, no es práctico tomar una decisión subjetiva respecto a cuál de las previsiones utilizar en sus planes para cada uno de los productos. El sistema evalúa automáticamente el rendimiento de cada uno de los métodos de pronóstico que selecciona y para cada uno de los productos previstos. Puede elegir entre dos criterios de rendimiento, la media de desviación absoluta (MAD) y el porcentaje de precisión (POA). MAD es una medida del error de pronóstico. POA es una medida del sesgo de pronóstico. Ambas técnicas de evaluación de rendimiento requieren datos reales del historial de ventas para un período de tiempo especificado por el usuario. Este período de la historia reciente se llama un período de retención o períodos de mejor ajuste (PBF). Para medir el rendimiento de un método de pronóstico, utilice las fórmulas de pronóstico para simular una previsión para el período de retención histórico. Normalmente habrá diferencias entre los datos de ventas reales y el pronóstico simulado para el período de retención. Cuando se seleccionan varios métodos de pronóstico, se produce el mismo proceso para cada método. Se calculan varias previsiones para el período de retención y se comparan con el historial de ventas conocido para ese mismo período de tiempo. Se recomienda el uso del método de previsión que produzca el mejor ajuste (el mejor ajuste) entre las previsiones y las ventas reales durante el período de retención para su uso en sus planes. Esta recomendación es específica para cada producto y puede cambiar de una generación de pronóstico a otra. A.16 Desviación absoluta media (MAD) MAD es la media (o promedio) de los valores absolutos (o magnitudes) de las desviaciones (o errores) entre los datos reales y los pronosticados. MAD es una medida de la magnitud promedio de los errores a esperar, dado un método de predicción y el historial de datos. Dado que los valores absolutos se utilizan en el cálculo, los errores positivos no anulan los errores negativos. Cuando se comparan varios métodos de pronóstico, el que tiene el MAD más pequeño ha demostrado ser el más confiable para ese producto durante ese período de retención. Cuando el pronóstico es imparcial y los errores normalmente se distribuyen, existe una relación matemática simple entre MAD y otras dos medidas comunes de distribución, desviación estándar y error cuadrático medio: A.16.1 Porcentaje de precisión (POA) Porcentaje de precisión (POA) es Una medida del sesgo de previsión. Cuando las previsiones son consistentemente demasiado altas, los inventarios se acumulan y los costos de inventario aumentan. Cuando las previsiones son consistentemente dos bajas, los inventarios se consumen y el servicio al cliente disminuye. Un pronóstico que es 10 unidades demasiado bajo, entonces 8 unidades demasiado alto, entonces 2 unidades demasiado alto, sería un pronóstico imparcial. El error positivo de 10 es cancelado por errores negativos de 8 y 2. Error Actual - Pronóstico Cuando un producto puede almacenarse en inventario, y cuando el pronóstico es imparcial, se puede usar una pequeña cantidad de stock de seguridad para amortiguar los errores. En esta situación, no es tan importante eliminar errores de pronóstico como es generar pronósticos imparciales. Sin embargo, en las industrias de servicios, la situación anterior sería vista como tres errores. El servicio estaría con escasez de personal en el primer período, y luego en exceso para los próximos dos períodos. En los servicios, la magnitud de los errores de pronóstico suele ser más importante de lo previsto. La suma durante el período de retención permite que los errores positivos cancelen errores negativos. Cuando el total de las ventas reales supera el total de las ventas previstas, la proporción es superior a 100. Por supuesto, es imposible tener más de 100 precisión. Cuando un pronóstico no es imparcial, la proporción de POA será 100. Por lo tanto, es más deseable ser 95 preciso que ser 110 exacto. El criterio POA selecciona el método de pronóstico que tiene una relación de POA más cercana a 100. Los scripts en esta página mejoran la navegación de contenido, pero no cambian el contenido de ninguna manera.
No comments:
Post a Comment